

Recombinant RNasin[®] Ribonuclease Inhibitor 简明操作指导

注意: 这是节选操作步骤, 详细英文说明书见

www.promega.com/protocols/

适用产品目录号: N2511, N2515

1.说明:

RNasin® RNA 酶抑制剂具有广谱的抑制 RNA 酶的特性,包括抑制中性型(neutral type)真核 RNA 酶(1,见表 2)。该抑制剂是分子量为 50kDa 的蛋白,通过以 1:1 的比例与 RNA 酶非共价结合发挥抑制作用。RNasin® RNA 酶抑制剂与 RNA 酶(如 RNase A)结合的 K_i 值大约是 10^{14} M(2-4)。相较之下,抗体的结合常数通常为 10^6 - 10^9 M。除此之外,RNasin® RNA 酶抑制剂的动力学反应非常快速,保证了与 RNA 酶迅速形成复合物并对其产生抑制作用。Promega 提供两种不同的抑制剂:Natural RNasin® Ribonuclease Inhibitor(目录号:N2111,N2115)和 Recombinant RNasin® Ribonuclease Inhibitor(目录号:N2511,N2515)。两种产品均通过离子交换和亲和层析相结合的方法纯化得到。两种抑制剂都不含 DNA 核酸外切酶和核酸内切酶活性,也不含 RNA 酶活性。除有抑制 RNA 酶活性的能力之外,RNasin® RNA 酶抑制剂还被证明能够抑制由血管生成素诱导的新生血管生成(5)。

Recombinant RNasin® Ribonuclease Inhibitor (**重组 RNasin® RNA 酶抑制剂**)可为研究人员提供更高级别的纯度和一致性保证。分离自重组大肠杆菌,N端是一个未被阻断的丝氨酸残基。

注意事项: 由于 RNA 酶能在变性的条件下保持活性,所以应注意避免使已经和 RNA 酶形成了复合物的 RNasin® RNA 酶抑制剂变性。为了防止有活性的 RNA 酶被释放出来,反应温度不得高于 50℃,不要有高浓度的尿素等变性剂存在。RNasin® RNA 酶抑制剂在广泛的 pH 范围内有活性。如果要稀释并保存更长的时间,请加入 DTT(最低浓度为 1mM)。

来源: 表达重组克隆的大肠杆菌细胞。

酶储存液: 重组 RNasin® RNA 酶抑制剂溶在 20mM HEPES-KOH (pH 7.6), 50mM KCI, 8mM DTT 和 50% (v/v) 甘油中。

单位定义:一个活力单位定义为抑制 5ng RNA 酶 A 50% 活力所需要的重组 RNasin[®] RNA 酶抑制剂的量。活力检测的方法是测定其对 RNA 酶 A 水解 2',3'-环单磷酸胞嘧啶的抑制作用。请注意查看产品标签上的活力单位浓度。

储存条件:储存于 -20℃。避免多次冻融和频繁温度变化。请注意查看产品标签上的有效期。

使用注意: RNasin[®] RNA 酶抑制剂在广泛的 pH 值范围内有活性。冻存产品可能出现浓度梯度,应在融化后混匀。使用前请充分混合。

表 1. 重组 RNasin® RNA 酶抑制剂的特性

特性	注释
作用	通过非共价结合使 RNA 酶失活
分子量	49,847 道尔顿
抑制类型	非竞争性(3)
等电点	pl 4.7
活性 pH 范围	pH 5.5-9 (4)
与 RNA 酶 A 的结合比率	1:1 (3)
结合抑制常数	$K_i = 4 \times 10^{-14} M (3,4)$
使用量	每微升溶液用 1 单位抑制剂
应避免的反应条件	高于 50℃的温度,尿素,SDS,其它变性剂

表 2. 重组 RNasin® RNA 酶抑制剂针对核酸酶的选择性效果

抑制	不抑制
RNase A	RNase T1
RNase B	S1 Nuclease
RNase C 人胎盘 RNase	- 曲霉属(<i>Aspergillus sp</i> .)RNase
	RNase H, RNase ONE™ 核糖核酸酶,Taq DNA 聚合酶,ImProm- II™、AMV 或 M-MLV 逆转录酶,SP6、T7 或 T3 RNA 聚合酶

Ⅱ.标准操作流程

重组的和天然的 RNasin[®] RNA 酶抑制剂在体外转录翻译反应中可相互替换使用,如下所述。要了解更多关于体外转录系统和操作的信息,请参阅 *Riboprobe[®] In Vitro Transcription Systems*(Riboprobe[®] 体外转录系统)操作手册 TM016。

A. 体外转录 (未标记的 RNA)

在下面标准的体外转录反应中,RNasin[®] RNA 酶抑制剂的终浓度是 1u/μl。通过适当调整,这个反应可用在多种体外转录实验中。

5X transcription buffer	20μΙ	
DTT, 100mM	10µl	
RNasin [®] Ribonuclease Inhibitor	100u	
ATP, GTP, CTP 和 UTP, 各 2.5mM*	20μΙ	
	2μΙ	
RNA 聚合酶 ; SP6, T3 或 T7	0–50u	
	100µl	

^{*} 将 4 种 10mM rNTP 储液按等体积混合。

B. 体外转录(32P 标记的 RNA 探针)

5X transcription buffer	4µl	
DTT, 100mM	2µl	
RNasin® Ribonuclease Inhibitor	20u	
ATP, GTP 和 UTP, 各 2.5mM**	4µl	
CTP, 100µM	2.4µl	
溶于水或 TE 中的线性化质粒 DNA, 0.2-1.0mg/ml	1µl	
[α ⁻³² P]CTP, 50μCi, 10mCi/ml	5µl	
RNA 聚合酶; SP6, T3 或 T7	1µl	
无核酸酶的水加至	20μΙ	

^{**} 将 1 体积水和各 1 体积的 10mM ATP, GTP 和 UTP 储存液混合。

C. 体外翻译

在标准和偶联的体外翻译系统中加入 RNasin[®] RNA 酶抑制剂以保护 RNA 底物。

示例 1: 使用兔网织红细胞裂解物进行体外翻译反应:

Rabbit Reticulocyte Lysate	35µl	
RNasin® Ribonuclease Inhibitor	40u	
Amino Acid Mixture Minus Methionine, 1mM	1µl	
[35S]methionine (1,200Ci/mmol), 10mCi/ml	4µl	
溶于水的 RNA 模板	2µg	
	50µl	

示例 2: 使用 TNT® 网织红细胞裂解物或小麦胚芽提取物系统进行转录/翻译偶联反应:

TNT® Rabbit Reticulocyte Lysate or Wheat Germ Extract	25µl	
TNT® Reaction Buffer	2µl	
TNT [®] T3, T7 或 SP6 RNA Polymerase	1μΙ	
Amino Acid Mixture Minus Methionine, 1mM	1μΙ	
[35S]methionine (1,000Ci/mmol), 10mCi/ml	4µl	
RNasin [®] Ribonuclease Inhibitor, 40u/μl	40u	
DNA 模板	1µg	
无核酸酶的水加至终体积	50µl	
30°C孵育 60-120 分钟。		

Ⅲ. 缓冲液组成

5X transcription buffer

200mM Tris-HCI (pH 7.5)

30mM MgCl₂ 10mM 亚精胺 50mM NaCl

1X TE buffer

10mM Tris-HCI (pH 8.0)

1mM EDTA

Ⅳ.参考文献

- 1. Blackburn, P. and Moore, S. (1982) In: The Enzymes, Vol. XV, Part B, Academic Press, New York.
- 2. Blackburn, P., Wilson, G. and Moore, S. (1977) Ribonuclease inhibitor from humanplacenta. Purification and properties. J. Biol. Chem. 252, 5904–10.
- 3. Lee, F.S., Auld, D.S. and Vallee, B.L. (1989) Tryptophan fluorescence as a probe ofplacental ribonuclease inhibitor binding to angiogenin. Biochemistry 28, 219–24.
- 4. Shultz, J. and Hurst, R. (2001) Characterization of RNasin® Ribonuclease Inhibitor. Promega Notes 77, 8–11.
- 5. Shapiro, R. and Vallee, B.L. (1987) Human placental ribonuclease inhibitor abolishesboth angiogenic and ribonucleolytic activities of angiogenin. Proc. Natl. Acad. Sci.USA 84, 2238–41.